
Comparing Fractions 

Unit 14 > Lesson 5 of 11 
Example 1: 
Drake rode his bike for threefourths of a mile and Josh
rode his bike for onefourth of a mile. Which boy rode his bike farther? 

Drake 

Josh 


Analysis: 

? 




These fractions have like denominators, so we can compare the numerators.


Solution: 

> 



Since three is greater than one, threefourths is
greater than onefourth. Therefore, Drake rode his bike farther.

When comparing two fractions with like denominators, the larger fraction is the one with the greater
numerator. Let's look at some more examples of comparing fractions with like
denominators.

Example 2: 
Compare the fractions given below using the
symbols <, > or =. 
a) 

b) 

c) 

d) 

e) 

f) 


Example 3: 
Josephine ate threefourths of a pie and Penelope ate twothirds of a pie. If both pies are the same
size, then which girl ate more pie? 
 
Analysis: 

? 



These fractions have unlike denominators (and unlike numerators). It would be easier to compare them if they had
like denominators. We need to convert these fractions to equivalent fractions with a common
denominator in order to compare them more easily.



Solution: 


Since ninetwelfths is greater than eighttwelfths, threefourths is
greater than twothirds. Therefore, Josephine ate more pie.

The example above works out nicely! But how did we know to use 12 as our
common denominator? It turns out that the least
common denominator is the best choice for comparing fractions.

Definition: 
The least common denominator (LCD) of two or more nonzero denominators is
the smallest whole number that is divisible by each of the denominators. 
To find the least common denominator (LCD) of two fractions, find the least
common multiple (LCM) of their denominators.

Remember that "..." at the end of each list of multiples
indicates that the list goes on forever. Revisiting example 3, we found that the least common multiple of 3 and 4
is 12. Therefore, the least common denominator of twothirds and threefourths is
12. We then converted each fraction
into an equivalent fraction with a denominator of 12, so that we could compare them.

Procedure: 
To compare fractions with unlike denominators, follow these steps: 


1. Use the LCD to write equivalent fractions with a common denominator. 

2. Compare the numerators: The larger fraction is the one
with the greater numerator. 

Let's look at some more examples of comparing fractions with unlike denominators.
Example 4: 

Analysis: 
Convert these fractions to
equivalent fractions with a common denominator in order to compare them. 
Step1: 
Find the least common multiple (LCM) of 8 and 10. 
multiples of 8 are 8, 16, 24, 32, 40, 48, 56, 64, 72,
80,... 
multiples of 10 are 10, 20, 30, 40, 50, 60, 70, 80,... 
The LCM of 8 and 10 is 40. 

Analysis: 

Step 2: 
Convert each fraction to an equivalent fraction with a denominator of
40. 


Answer: 

Example 5: 

Analysis: 
Convert these fractions to equivalent fractions with a common denominator in order to compare them. 
Step 1: 
Find the least common multiple (LCM) of 6 and 4. 
multiples of 6 are 6, 12, 18, 24, 30, 36,... 
multiples of 4 are 4, 8, 12, 16, 20, 24, 28, 32, 36,... 
The LCM of 6 and 4 is 12. 

Analysis: 

Step 2: 
Convert each fraction to an equivalent fraction with a denominator of
12. 


Answer: 

Example 6: 

Analysis: 
Convert these fractions to
equivalent fractions with a common denominator in order to compare them. 
Step 1: 
Find the least common multiple (LCM) of 9 and 3. 
multiples of 9 are 9, 18, 27, 36, 45, 54, 63, 72,... 
multiples of 3 are 3, 6, 9, 12, 18, 21, 24, 27, 30,
33, 36,... 
The LCM of 9 and 3 is 9. 

Analysis: 

Step 2: 
Convert each fraction to an equivalent fraction with a denominator of
9. 


Answer: 

In this lesson, we have compared fractions with like denominators and with unlike denominators. Let's see what
happens when we compare fractions with like numerators. Look at the shaded rectangles below.

The fractions above all have the same numerator. (Each of these fractions is called a
unit
fraction.) As the denominator gets larger, the fraction gets smaller. To compare fractions with like numerators, look at
the denominators. The fraction with the smaller denominator is the larger fraction. Let's look at some examples.

Since onehalf has the smaller denominator, it is the larger fraction.

Since threefourths has the smaller denominator, it is the larger fraction.

Since fivethirds has the smaller denominator, it is the larger fraction. Remember, when comparing fractions with
like numerators, the fraction with the smaller denominator is the larger fraction. Let's look at
some more examples of comparing fractions with like numerators.

Example 10: 
Compare the fractions given below using the
symbols <, > or =. 
a) 

b) 

c) 

d) 

e) 



threethirds 



fourfourths 




= 


Note that the improper fractions in example 11 are equivalent. This is because for each fraction, the numerator is equal
to its denominator. So, each fraction is equivalent to 1. We have looked at many examples in this lesson. Let's
try to summarize what we have learned.

R U L E S F O R C O M P A R I N
G F R A C T I O N S

Relationship 
How To Compare 
Example 
Like Denominators 
Look at the numerators. The larger fraction is the one with the greater numerator. 

> 


Unlike Denominators 
Convert each fraction to an equivalent fraction with a common denominator. The larger
fraction is the one with the greater numerator. 

Like Numerators 
Look at the denominators. The fraction with the smaller denominator is the larger fraction. 

> 


Summary: 
In this lesson, we learned how to compare fractions with like denominators, with unlike denominators, and
with like numerators. To compare fractions with unlike denominators, use the LCD to write equivalent fractions with a common
denominator; then compare the numerators. 
Exercises
In Exercises 1 through 5, click once
in an ANSWER BOX and type in your answer; then click ENTER. After you click ENTER, a message will appear in the RESULTS BOX to
indicate whether your answer is correct or incorrect. To start over, click
CLEAR. Note: To write the fraction twothirds, enter 2/3 into the form.

1. 
Jill jogged for threetenths of a mile and Jane jogged for
seventenths of a mile. Which girl jogged farther?




2. 
A magazine sells one advertisement that is seveneighths of a page and
another advertisement that is fivesixths of a page. What is the LCD of
these two fractions?




3. 
Which fraction from exercise 2 represents the larger advertisement? (Write
your answer in
lowest terms.)




4. 
Compare twoninths and onesixth by using the LCD to write
equivalent fractions. Then write the smaller fraction in lowest terms.




5. 
Which is greater: ninetenths or nineninths? (Write the fraction
below.)




This lesson is by Gisele Glosser. You can find me on Google.
