Use your knowledge of Sets and Set Theory to answer each question below.

- 1. In each problem, indicate set equality by writing = or \neq .
 - a) $A = \{0, 2, 4, 6, 8, 10, 12\}$ \neq $B = \{t, r, i, a, n, g, l, e\}$
 - b) $C = \{a, e, i, o, u\}$ = $D = \{vowels\}$
 - c) $X = \{ \text{whole numbers} \le 9 \}$ \neq $Y = \{ 8, 4, 5, 7, 2, 0, 6, 3, 1 \}$
 - d) $P = \{\text{fingers}\}\$ = $Q = \{\text{thumb, index, middle, ring, little}\}\$
- 2. In each problem, indicate whether one set is a subset of the other by writing the symbols □ or □.
 - a) $A = \{0, 2, 4, 6, 8, 10, 12\}$ \subseteq $B = \{\text{even numbers between 0 and 20}\}$
 - b) $M = \{consonants\}$ $\nabla M = \{a, b, c, d, e\}$
 - c) $X = \{ \text{whole numbers} < 7 \}$ \subseteq $Y = \{ 8, 4, 9, 5, 7, 2, 0, 6, 3, 1 \}$
 - d) $C = \{a, e, i, o, u\}$ \square $D = \{The English alphabet\}$
 - e) $R = \{e, a, r\}$ $\subseteq S = \{c, a, r, d\}$
 - f) $F = \{-4, -3, -2, -1, 0, 1\}$ \subseteq $G = \{\text{integers} < 7\}$
 - g) $P = \{\text{Saturday}, \text{Sunday}\}$ $\mathcal{Q} = \{\text{Wednesday}, \text{Thursday}, \text{Friday}, \text{Saturday}\}$
- 3. Create an example of two sets in which the first set is a subset of the second.

4. Create an example of two sets in which the first set is not a subset of the second.

Sample answer 1:
$$\{e, a, r, s\} \nsubseteq \{l, e, a, r, n\}$$

Sample answer 2: $\{1, 3, 5, 7, 9\} \nsubseteq \{even whole numbers\}$

- 5. How many subsets does each set have? Show your work.
 - a) $X = \{0, 2, 4, 6\}$ $n = 4; 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$
 - b) $Q = \{\text{fingers}\}\$ $n = 5; 2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$
 - c) $P = \{\text{primary colors}\}\$ $n = 3; 2^3 = 2 \cdot 2 \cdot 2 = 8$