testing header
Math Goodies is a free math help portal for students, teachers, and parents.
Free Math
Newsletter
 
 
Interactive Math Goodies Software

Buy Math Goodies Software
testing left nav
Math Forums @ Math Goodies
Math Forums @ Math Goodies
Home | Profile | Active Topics | Members | Search | FAQ
Username:
Password:
Save Password
Forgot your Password?

 All Forums
 Homework Help Forums
 Pre-Calculus and Calculus
 CONVOLUTION! need help desperately will pay money!
 New Topic  Reply to Topic
 Printer Friendly
Author Previous Topic Topic Next Topic  

nirvanaguy
Average Member

USA
14 Posts

Posted - 01/29/2011 :  22:06:04  Show Profile  Reply with Quote
Hi guys,
I really need to understand this as soon as possible so I don't get screwed and left behind in the lectures..

I have2 problems:

z(t)=[e^(-t)*u(t)] * [e^(-t)*u(t)]

I got the answer 1 but for some reason I don't think that's right.. I know that when you analyze it graphically z=0 for t<0 and for t>0 i had my bounds go from 0 to infinity of e^-(t)dt


2nd) [t*e^(-t)*u(t)]*[2*u(t+.5)-2*u(t-.5)]

For this one for my boundaries for when 0<t<1 i used 0 to t
and for t>1 I used t-1 to t as my boundaries since thats the width of the unit pulse. however, i'm know thats not right because i graphed them and the area comes out all funky. I think it's wrong because it has somtehing to do with the .5 shifts on both sides instead of just the shift of 1 to the right..

If someone could help out that would be amazing and I will honestly pay you if you'd like
Go to Top of Page

Ultraglide
Advanced Member

Canada
299 Posts

Posted - 02/11/2011 :  17:27:22  Show Profile  Reply with Quote
I am sure you will find all kinds of material on the net. I did.
Go to Top of Page
  Previous Topic Topic Next Topic  
 New Topic  Reply to Topic
 Printer Friendly
Jump To:
Math Forums @ Math Goodies © 2000-2004 Snitz Communications Go To Top Of Page
This page was generated in 0.03 seconds. Snitz Forums 2000
testing footer
About Us | Contact Us | Advertise with Us | Facebook | Blog | Recommend This Page




Copyright © 1998-2014 Mrs. Glosser's Math Goodies. All Rights Reserved.

A Hotchalk/Glam Partner Site - Last Modified 18 Dec 2014