testing header
Math Goodies is a free math help portal for students, teachers, and parents.
Free Math
Newsletter
 
 
Interactive Math Goodies Software

Buy Math Goodies Software
testing left nav
Math Forums @ Math Goodies
Math Forums @ Math Goodies
Home | Profile | Active Topics | Members | Search | FAQ
Username:
Password:
Save Password
Forgot your Password?

 All Forums
 Homework Help Forums
 Miscellaneous Math Topics
 game theory math best response function
 New Topic  Topic Locked
 Printer Friendly
Author Previous Topic Topic Next Topic  

sobebongholio
New Member

USA
1 Posts

Posted - 09/10/2007 :  09:44:19  Show Profile


Two people have 10 dollars to divide between themselves. they use the following procedure. each person names a number of dollars (nonnegative integer), at most equal to 10. IF the sum of the amounts that the people name exceeds 10 and the amounts named are different, then the person who named the smaller amount receives that amount and the other person receives the remaining money. if the sum of the amounts that the people name exceeds 10 and the amounts are the same, each person receives 5 dollars. determine the best response of each player to each of the other players' actions and thus find the nash equilibria

I need to know how this answer is gotten, so plz show or tell me how work done

players : two individuals
actions : each players' set of actions is the set of effort levels (non negative numbers)
preferences : player i's pereferences are representede by the payoff function Ai(c+Aj-Ai)

To find the nash equilibria we can construct and analyze the players best response functions. given Aj, in dividual i's payoff is a quadratic function of Ai that is zero when Ai=0 and when Ai=C+Aj, and reaches a maximum in between. the symmetry of quadratic functions implies that the best response of each individual i to
Aj is Bi(Aj) = 1/2(C+Aj)

if u know calc, you can reach the same conclusion by setting the derivative of player i's payoff with respect to Ai equal to zero.

Go to Top of Page
  Previous Topic Topic Next Topic  
 New Topic  Topic Locked
 Printer Friendly
Jump To:
Math Forums @ Math Goodies © 2000-2004 Snitz Communications Go To Top Of Page
This page was generated in 0.03 seconds. Snitz Forums 2000
testing footer
About Us | Contact Us | Advertise with Us | Facebook | Blog | Recommend This Page




Copyright © 1998-2014 Mrs. Glosser's Math Goodies. All Rights Reserved.

A Hotchalk/Glam Partner Site - Last Modified 26 Nov 2014